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Diffusion Processes in Multicomponent 
Systems 
I1 Macroscopic Investigation of a LiCl Solution 

M. E. FONTANELLA, N. MICALI, G. SALVATO and F. WANDERLINGH 

lstituto di Tecniche Spettroscopiche del CNR. Messina, Italy. 

(Received October 19, 1985) 

The macroscopic diffusive behaviour of a solution of LiCl is investigated by an optical technique. 
The time evolution of a macroscopic concentration gradient is detected. The main goal of the 
present work is to compare the obtained results with the microscopic values of diffusion 
coefficients of both salt and water, previously found in an NMR measurement. 

It is shown that, even in the case of large gradients, a linear relationship between flux and 
forces exists, provided that a new phenomenon, macroscopic in character, is properly taken into 
account. 

In such a case the diffusion coefficicnts found in the NMR measurements also describe the 
macroscopic behaviour. 

1 INTRODUCTION 

In a previous paper,' hereafter referred to as (I), the diEusion coefficients of 
both water (proton) and cation Li' has been measured by means of a spin 
echo NMR technique, in a LiCl solution, at various temperatures and 
concentrations. In this kind of measurements the self-diffusion coefficients are 
measured in an equilibrium situation, the system being investigated from a 
microscopic point of view. 

In fact the obtained values for the diffusion coefficient are to be related to 
the mean square displacement of a tagged nucleus, as pointed out in (I). 

In the present paper we study the same system from a macroscopic point of 
view. A macroscopic gradient of concentration is artificially induced in the 
sample, and the evolution towards the equilibrium is experimentally studied. 
The aim of such an investigation is the comparison between microscopic and 
macroscopic behaviour. In particular we want to test the possibility that the 
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same coefficients, found in the NMR measurements, can be used to describe 
the non-equilibrium macroscopic evolution of the system. 

As far as the theoretical elaboration of a model is concerned, we will treat 
the solution as a two-component system, namely water and dissolved salt, the 
diffusive behaviour of the latter being identified with that of the Li’ cation. 
Such a simplifying assumption means disregarding charge fluctuations, i.e. we 
assume that, at  least in the macroscopic behaviour implied in this measure- 
ment, the charge neutrality is assured. In addition, as we shall see in the 
sequel, the macroscopic behaviour of the solution is mainly determined by 
the diffusive properties of water molecules, because of the large value of the 
diffusion coefficient of water, compared with that of the Li’. 

We will show that the same diffusion coefficients found in the NMR 
investigation can be used to describe the macroscopic behaviour of the 
solution, provided that an additional phenomenon, macroscopic in char- 
acter, is properly taken into account. The latter refers to a change in the local 
density of the system, induced by the large difference between the diffusion 
coefficient of water and of solute. The corresponding density gradient is 
smeared out by a “compensation” flux, whose effect, ultimately, results in the 
fact that the larger diffusion coefficient (in our case, namely that of water) is, 
in a sense, also transferred to the second component. 

2 EXPERIMENTAL PROCEDURE A N D  RESULTS 

As far as sample preparation is concerned, the procedure is the same as the 
one described in (I). In the present measurement, an optical cell is half-filled 
with saturated solution (concentration of 46% by weight); then the remaining 
part of the cell is filled, with great care, with doubly distilled water. 

Saturated solution and pure water remain well separated because of the 
large difference in their densities, the separation meniscus being clearly 
visible. In the course of time, a macroscopic diffusion process takes place, and 
its evolution, both in space and time, is experimentally detected. The cell has 
a thickness of 0.1 cm and height of 2 cm. A thin laser beam is allowed to pass 
through the sample. Owing to the presence of gradients of both concentration 
and density, a gradient of the refractive index also occurs in the sample, so 
that the beam is bent, the angle of bending being proportional to  the gradient 
of the refractive index. The position (height) of the cell with respect to the 
incoming beam can be continuously changed, so that the gradients can be 
revealed along the entire height of the sample, as a function of time. 

In a first experiment the time evolution of the gradient was detected at the 
constant height of 1 cm, i.e. at one-half of the total height, that is the position 
in which at t = 0 the separation between saturated solution and pure water 
occurs. 
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DIFFUSION IN LiCl SOLUTION I1 291 

Within the approximation of a constant diffusion coefficient, the analytical 
solution of Fick’s equation evaluated at this point, becomes very simple to 
handle, as we shall see in the next section. In such a way a first indication of 
the actual behaviour of the system can be obtained (see Section 3 and Figure 
3). 

In a second experiment the behaviour of the gradient of the refractive index 
was detected along the entire length of the sample as a function of time. In 
Figure 1 we report the experimental results of such an experiment, showing 
the gradients as a function of position at fixed time values, up to 50,000 sec., 
after the sample preparation. 

Some preliminary considerations can be made: 

i) the behaviour of the gradients is not symmetrical around the centre of 
the sample, as one would expect in the hypothesis of a simple diffusion 
equation, characterized by constant diffusion coefficients (see Section 3) 

ii) One can consider the following quantity: 

!:(grad n) dx = n(l) - n(0) (1) 

where 1 is the length of the sample and n the refractive index. Such a quantity 
can be plotted as a function of time (see Figure 2) .  
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FIGURE 1 
after preparation. 

Gradients of the refractive index along the sample, after various time intervals 
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FIGURE 2 Difference between refractive index at the top and bottom of the sample as a 
function of time (See Eq. (I)). 

One would expect such a quantity to stay constant until the gradients do 
not become sizeable at the lower and upper edge of the sample, i.e. at least for 
4000 sec. On the contrary, the experimental values of Eq. (1) start to decrease 
very quickly almost immediately after the sample preparation. As we shall see 
in the next section, such a circumstance turns out to be very important for the 
interpretation of experimental results. 

3 DISCUSSION OF EXPERIMENTAL DATA AND THEORETICAL 
MODELS 

The simplest model that one can try to use, consists of the assumption that 
the concentration c(x, t ) ,  expressed as weight fraction of the solute, obeys a 
diffusion equation of the kind 

where D is an overall diffusion coefficient, and the coordinate x spans the 
height of the sample. 

Equation (2) can be analytically solved, provided that D is constant. With 
the appropriate boundary conditions the solution takes the form of a series: 

n 
cos(2n + 1 )  - x co 2co 1 exp[--F (2n + l)n 1 Dt (3) C ( X , t ) = -  -+ - -  =y(- 1)”. 

2 7t “ = O  (2n + 1) 
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where, in our case, Co = 0.46 is the saturation concentration, and 1 = 2 cm 
the length of the sample. The concentration gradient (&/ax) can be calcu- 
lated from Eq. (3). The latter, evaluated at x = 1/2, assumes a very simple 
form: 

The comparison with experimental data requires the knowledge of the 
refractive index as a function of concentration. We use literature data.’ 

A comparison with experimental results is shown in Figure 3, in which the 
experimental points are plotted as a function of 1/& The following 
considerations can be made: 

i) the slope of a straight line that best fits the experimental data furnishes a 
value D = 5 x lop4 cm2/sec. i.e. 25 times larger than the maximum value of 
the diffusion coefficient of water (D = 2 x lo-’ cm’/sec.) found in (I) with 
the NMR technique. 

ii) The deviations of experimental points from a straight line, although not 
very large, show a systematic rather than a random behaviour. 

t 
/ 

I //” 

r’ 
0.11 

t- 

FIGURE 3 Theoretical behaviour of the concentration gradient at half the height of the 
sample as a function of 1/& (continuous line). Dots refer to experimental data. 
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iii) According to Eq. (3), the concentration gradient turns out to be 
symmetric, for any value of t ,  around the middle point x = $. On the 
contrary, experimental results (see Figure 1) show a marked asymmetry. 

iv) The quantity C(0) - C(1) can be calculated from Eq. (3) and plotted as 
a function of the product D t  (see Figure 4). A comparison with the data of 
Figure 2 shows a marked difference, mainly in the initial behaviour. In 
addition the value that should be attributed to the diffusion coefficient D in 
Figure 4, in order to make comparable the decrease of calculated and 
experimental values, again turns out to be much larger than the NMR values 
found in (I). 

All these circumstances show that the simple model described in Eq. (2) 
cannot explain, even qualitatively, the experimental results. 

Let us now suppose that in the solution, each component (water and salt) 
obeys a diffusion equation, with its own diffusion coefficient. 

We write: 

P1 

P 1 + P 2  P 
- P1 c=---- ( 5 )  

where the concentration c is expressed as weight fraction of solute, p1 and p2 
being the partial density of salt and water respectively and p = p1 + p2 is the 
total density. From Eq. (5 ) ,  the temporal variation of the concentration can 
be expressed as: 

”=”(, -c)l?l-c- at 
at P aP1 

A u 

V 
I 
0 
c 

0 0.5 1 

(D.t),cm2 

FIGURE 4 
function of Dt, calculated according to Eq. (2). 

Difference between concentrations index at the top and bottom of the sample as a 
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On the other hand each component must obey to a continuity equation: 

a P  1 
~ = -div J,  
at 

aPZ 
at 

~ = -div J, 
(7) 

where J, and J, are the fluxes of the two components, that, according to our 
hypothesis obey the diffusion equations: 

J ,  = - D ,  grad p 1  

J, = - D ,  grad p z  

Moreover, because p 1  = pc  and p ,  = p(1 - c), the gradients in Eq. (8) can be 
expressed in terms of gradients of concentration and density. Inserting the 
results in Eq. ( 6 )  one gets: 

ac 1 dP 
at o d c  
-=[(1 - c ) D ,  + c D J A c + - - c ( ~  - c ) ( D ~  - I ) , ) A c  

+ ( l - c ) D l -  c - + p  - c D , -  { :c ( tE ) d”c [ 
(9) 

In order to obtain Eq. (9) we suppose that p = p(c)  so that grad p = 
d p / d c  . grad.c. We shall return later to such a question. 

An interesting feature of Eq. (9) is the presence of an “effective” diffusion 
coefficient 

Deff  = (1 - c)D,  + cD,  (10) 

Indeed, in the case in which the difference between the diffusion coefficients 
and/or between the densities of the two components could be neglected, and 
for small enough values of the concentration gradient, Eq. (9) reduces again 
to Eq. (2) with a diffusion coefficient given by Eq. (10). 

Actually an expression like Eq. (10) can be formally obtained in the case of 
a conformal mixture of two equal-mass ~omponents .~  

In our case, however, we have shown that Eq. (2) cannot explain the 
experimental behaviour, so that we are forced to retain all the terms in Eq. 

Equation (9) is nonlinear, and cannot be solved analytically. In addition 
we know that the diffusion coefficients D ,  and D ,  are not constant, being 
functions of concentration as shown from the NMR measurements. 

Such a circumstance would result in the appearance in Eq. (9) of additional 
terms of the (grad.D grad.c) kind. 

(9). 
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However Eq. (9) can be solved numerically, using the variable values of the 
diffusion coefficients (corresponding to the actual values of the concentra- 
tion) experimentally found in the NMR measurements. 

Such a numerical calculation has been carried out, the values of the density 
as a function of concentration being taken from l i t e r a t~ re .~  The following 
results arise: 

i) The allowance of a variability for the diffusion coefficients gives rise to 
the correct asymmetry in the concentration gradients profile, experimentally 
found (see Figure 1). 

ii) the time scale, theoretically evaluated from the numerical solution of 
Eq. (9) through the calculation of the quantity C(0) - C(l) as a function of 
time, again turns out to be much larger than the experimental behaviour of 
Figure 2. 

The latter circumstance could suggest that the values of the diffusion 
coefficients given by the NMR measurements, cannot be used to describe 
macroscopic fluxes, as those implied in the present measurements. However 
there is a deeper inconsistency that is inherent in the formulation of Eq. (9). 

4 EXCESS DENSITY A N D  "COMPENSATION FLUX" 

In the previous section we suppose that the density of the solution depends 
only on the concentration, p = p(c). In such a case, however, p l ,  and pz 
cannot be considered as independent variables any longer. As a consequence 
Eq. (9) could be rewritten in terms of either p1 or p z  solely. It is clear, 
however, that, depending on the choice of p1 or p z  (and therefore of D, or 
D2), two different time scales will be obtained. 

The inconsistency originates from the fact that the uniqueness of the 
function p = p(c) arises only for equilibrium states. Let us consider, as an 
example, a small volume element, in which the concentration is higher than 
that of the surrounding medium. Then an incoming water flux and an 
outcoming salt flux take place, the former being larger than the latter, due to 
the different values of the diffusion coefficients. After a short time interval 
both concentration and density in the considered volume element are 
changed, but the density does not correspond to the equilibrium value at  that 
concentration. Such an excess density, in turn, will give rise to a flux of 
solution (i.e. of both components) that must be properly taken into account. 

In order to do this, we write: 

P = Po + 6 P  
where po = po(c) is the equilibrium value, i.e. the value corresponding to the 
local concentration, while p is the actual value of the density. 
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As a consequence the gradients of the partial densities can be written: 

303 

grad p1  = p + c __ grad c + c grad(6p) ( %O) 

grad c + (1 - c) grad(6p) (12) dc 

As far as the fluxes J ,  and J, are concerned, one must distinguish between a 
contribution driven by grad c characterized by the diffusion coefficients D, 
and D ,  respectively, and a contribution driven by grad(6p). As far as the 
latter is concerned, it is reasonable to assume that a unique and constant 
diffusion coefficient, D, characterizes such a contribution. In fact the excess 
density will give rise to a hydrodynamic flux that involves the liquid as a 
whole, like a pressure gradient. 

It is possible to elaborate a calculus procedure that simulates the physical 
diffusion processes described above. The “sample” is partitioned in N small 
enough volume elements I(, and suitable initial conditions are assigned to 
them (Ci = 0.46 for i = 1 to N/2 ,  Ci = 0 for i = N/2 + 1 to N ,  and pi = po is 
calculated according to the literature data).4 Initially ( 6 ~ ) ~  is obviously zero. 
Then the concentration gradient is calculated as finite difference between 
neighbouring volume elements and the corresponding fluxes J,,  J, are also 
calculated using the proper values of D ,  and D, (taken from the NMR 
measurements). 

The fluxes change the values of the partial densities p1 and p,. After a small 
enough time interval the latter can be calculated, as well as the new values of 
concentration c = pl/(pl + p,), density p = p1 + p,  and excess density 
6p = p - po, being po(ci) the equilibrium value corresponding to the actual 
value of concentration. The procedure is repeated, taking into account that 
from the second step onwards the gradients of 6p contribute to the fluxes, 
through a single diffusion coefficient D. 

After a suitable number of steps the gradient of the refractive index can be 
calculated along the sample, and compared with experimental results. A 
comparison can also be made for the quantity n(0) - n(1). 

It is quite obvious that the results strongly depend on the (constant) value 
attributed to D. 

If D is much smaller than D, (the diffusion coefficient of water), one 
practically obtains the same results furnished by Eq. (9). In such a case, in 
fact, the role played by the excess density 6p becomes negligible, and one 
describes an unphysical process in which the partial density of water goes 
quickly to the equilibrium, due to the larger value of D,, giving rise to 
enormous values of local excess density. The partial density of salt, and 
therefore the concentration, goes to equilibrium much slowly, due to the 
smaller value of D,.  
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On the contrary, for values of D larger than D, the excess density is quickly 
smeared off. In a sense the large flux of water “pulls out” the solution as a 
whole, so that, ultimately, the flux of the salt also turns out to be determined 
by the D, values rather than by its own coefficient D,. 

It can be shown that assuming a value of 10-4cm2/sec for D, the 
experimental results are reproduced with great accuracy. An increase of D 
beyond such a value no longer appreciably changes the results. 

In Figure 5 we show the profile of the gradient of the refractive index, 
calculated by the above mentioned procedure. The refractive index n(c,p,) is 
calculated according to the literature data’ at the equilibrium density, the 
excess density being taken into account according to n(p)  = n(p,) . p/po.  

A comparison with the experimental data of Figure 1 shows that not only 
the shape of the curves and their time evolution are well reproduced, but also 
the numerical values theoretically calculated turn out to be equal to the 
experimental values. If one takes into account the entirely different physical 
situation and experimental methods which Figure 1 (equilibrium state, NMR 
measurements, literature data) and Figure 5 (macroscopic fluxes, measure of 
refractive index) refer to, the above mentioned agreement is, in our opinion, a 
strong support for the validity of our model. 

Another comparison can be made showing the calculated quantity n(0) - 
n(1) as a function of time (Figure 6).  Again the experimental data (see Figure 
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FIGURE 5 Gradients of refractive index along the sample at various time intervals after 
preparation, calculate according to the procedure described in Section 4. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
3
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



0 .I 5- 

0.1- 
X 
U 

U 
m L 
0, 

A- -.a 

- 
C 

0.05- 

0 

FIGURE 6 Difference between refractive index at the top and bottom of the sample as a 
function of time, calculated according to the procedure described in Section 4. 
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2) are well reproduced as far as both time scale and numerical values are 
concerned. Actually there are some differences regarding the short time 
behaviour. However such a circumstance can be easily understood if one 
takes into account that in the theoretically calculated values one starts with a 
“step” initial condition (the concentration gradient at t = 0 being a delta- 
function). Obviously in the experimental observation this is not true, because 
of some unavoidable initial mixing between saturated solution and pure 
water, that takes place despite the great care with which the sample is 
prepared. 

5 CONCLUDING REMARKS 

As mentioned in Section 1, the aim of the present work is to make a 
comparison between microscopic and macroscopic behaviour of the same 
system, as far as diffusion processes are concerned. 

The conclusion that can be drawn from our investigation can be summar- 
ized as follows: 

i) Microscopic (NMR) measurements, where the equilibrium concentra- 
tion fluctuations are concerned, show that the diffusion coefficients are 
different for the various components. 
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Moreover they depend on the concentration, suggesting a collective 
behaviour of the system. 

ii) As a consequence a diffusion process cannot be described by a simple 
Fick equation (Eq. (2)), because, in any case, one is concerned with 
differential equations with variable coefficients. 

iii) The macroscopic behaviour, concerned with macroscopic values of 
gradient and fluxes, can again be described through linear relationship 
between fluxes and forces, provided that the local excess density, arising from 
the difference between the diffusion coefficients, is properly smeared out by a 
suitable flux. In such a case, however, the “microscopic” values of the 
diffusion coefficients also describe the macroscopic process correctly. 

iv) The effect of the flux that arises from the excess density ultimately 
results in the circumstance that the component characterized by the lower 
value of the diffusion coefficient flows at nearly the same rate as the faster one. 
This is because the faster component pulls-out the solution, at the actual 
concentration, therefore forcing the salt to leave out the regions of higher 
concentration. 

There is a problem that arises from the above mentioned circumstances. The 
NMR measurements actually detect the mean square displacement of se- 
lected nuclei in a given time interval, irrespective of the specific process that 
originates the displacement itself. Therefore one would expect an apparent 
diffusion coefficient of the salt, nearly equal to that of water, to be measured 
in the NMR experiment. 

In other words, we can ask why the flux originated by the excess density 
that involves the salt as well as the water does not influence the NMR 
measurements. 

A tentative answer could be as follows: NMR measurements refer to a 
system in an equilibrium state. The equilibrium state is characterized by a 
well defined spectrum of fluctuations both in the density and concentration. 

The circumstance that, in such conditions, the two components show 
different diffusion coefficients would suggest that the density fluctuations are 
strictly correlated to the concentration fluctuations, in such a way that the 
regression of a concentration fluctuation towards equilibrium also implies 
the regression of the correlated density fluctuation. On the contrary, in the 
macroscopic case, the initial status can be considered as characterized by an 
enormous concentration fluctuation, while density corresponds to the equi- 
librium value (at the local concentration) along the entire sample. 

More research is in progress in order to obtain a deeper insight on such a 
question. 
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